The Sun is Dimming

Dec. 15, 2017: On Friday, Dec. 15th, at the Cape Canaveral Air Force Station in Florida, SpaceX launched a new sensor to the International Space Station named TSIS-1. Its mission: to measure the dimming of the sun. As the sunspot cycle plunges toward its 11-year minimum, NASA satellites are tracking a decline in total solar irradiance (TSI). Across the entire electromagnetic spectrum, the sun’s output has dropped nearly 0.1% compared to the Solar Maximum of 2012-2014. This plot shows the TSI since 1978 as observed from nine previous satellites:


Click here for a complete explanation of this plot.

The rise and fall of the sun’s luminosity is a natural part of the solar cycle. A change of 0.1% may not sound like much, but the sun deposits a lot of energy on the Earth, approximately 1,361 watts per square meter. Summed over the globe, a 0.1% variation in this quantity exceeds all of our planet’s other energy sources (such as natural radioactivity in Earth’s core) combined. A 2013 report issued by the National Research Council (NRC), “The Effects of Solar Variability on Earth’s Climate,” spells out some of the ways the cyclic change in TSI can affect the chemistry of Earth’s upper atmosphere and possibly alter regional weather patterns, especially in the Pacific.

NASA’s current flagship satellite for measuring TSI, the Solar Radiation and Climate Experiment (SORCE), is now more than six years beyond its prime-mission lifetime. TSIS-1 will take over for SORCE, extending the record of TSI measurements with unprecedented precision. It’s five-year mission will overlap a deep Solar Minimum expected in 2019-2020. TSIS-1 will therefore be able to observe the continued decline in the sun’s luminosity followed by a rebound as the next solar cycle picks up steam. Installing and checking out TSIS-1 will take some time; the first science data are expected in Feb. 2018. Stay tuned.

Rock Comet Approaches Earth

Dec. 11, 2017: You’ve heard of comets. But have you ever heard of a rock comet? They exist, and a big one is approaching Earth this week. 3200 Phaethon will fly past our planet on Dec. 16th only 10 million km away. Measuring 5 km in diameter, this strange object is large enough for amateur astronomers to photograph through backyard telescopes. A few nights ago, the Astronomy Club of the Sing Yin Secondary School in Hong Kong video-recorded 3200 Phaethon’s approach using a 4-inch refractor:

“We observed 3200 Phaethon from the basketball court of our school campus,” the club reports. “Our school is located close to the city center where the visual limiting magnitude is about 2 to 3. Despite the glare, we were able to record the motion of this object.” (For others who wish to do this, Bob King of Sky & Telescope has written an excellent set of observing tips.)

3200 Phaethon is the source of the annual Gemini meteor shower, which is also coming this week. Sky watchers can see dozens of Geminids per hour on Dec. 13th and 14th as gravelly bits of the rock comet disintegrate in Earth’s upper atmosphere. The best time to look is during the dark hours before sunrise when Gemini is high in the sky.

“This is 3200 Phaethon’s closest encounter with Earth until December of 2093, when it will come to within 1.8 million miles,” notes Bill Cooke of NASA’s Meteoroid Environment Office. Despite the proximity of the rock comet, he doesn’t expect to see any extra Geminids this year. “It would take at least another revolution around the sun before new material from this flyby could encounter Earth – probably longer.”

A “rock comet” is an asteroid that comes very close to the sun–so close that solar heating scorches plumes of dust right off its stony surface. 3200 Phaethon comes extremely close to the sun, only 0.14 AU away, less than half the distance of Mercury, making it so hot that lead could flow like water across its sun-blasted surface. Astronomers believe that 3200 Phaethon might occasionally grow a comet-like tail of gravelly debris–raw material for the Geminid meteor shower. Indeed, NASA STEREO-A spacecraft may have seen this happening in 2010. There is much to learn about 32900 Phaethon, which is why NASA radars will be pinging it as it passes by. Stay tuned for updates.

Atmospheric Radiation is Increasing

Dec. 9, 2017: Since the spring of 2015, Spaceweather.com and the students of Earth to Sky Calculus have been flying balloons to the stratosphere over California to measure cosmic rays. Soon after our monitoring program began, we quickly realized that radiation levels are increasing. Why? The main reason is the solar cycle. In recent years, sunspot counts have plummeted as the sun’s magnetic field weakens. This has allowed more cosmic rays from deep space to penetrate the solar system. As 2017 winds down, our latest measurements show the radiation increase continuing apace–with an interesting exception, circled in yellow:

In Sept. 2017, the quiet sun surprised space weather forecasters with a sudden outburst of explosive activity. On Sept. 3rd, a huge sunspot appeared. In the week that followed, it unleashed the strongest solar flare in more than a decade (X9-class), hurled a powerful CME toward Earth, and sparked a severe geomagnetic storm (G4-class) with Northern Lights appearing as far south as Arkansas. During the storm we quickened the pace of balloon launches and found radiation dropping to levels we hadn’t seen since 2015. The flurry of solar flares and CMEs actually pushed some cosmic rays away from Earth.

Interestingly, after the sun’s outburst, radiation levels in the stratosphere took more than 2 months to fully rebound. Now they are back on track, increasing steadily as the quiet sun resumes its progress toward Solar Minimum. The solar cycle is not expected to hit rock bottom until 2019 or 2020, so cosmic rays should continue to increase, significantly, in the months and years ahead. Stay tuned for updates as our balloons continue to fly.

Technical note: The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies, which span the range of medical X-ray machines and airport security scanners, trace secondary cosmic rays, the spray of debris created when primary cosmic rays from deep space hit the top of Earth’s atmosphere.