Rocks and Soil Electrified by the May 10th Superstorm

May 23, 2024: (Spaceweather.com) Across the USA on May 10th and 11th, sky watchers marveled at bright displays of aurora borealis during the biggest geomagnetic storm in decades. Little did they know, something was also happening underfoot.

Strong electrical currents were surging through rocks and soil. The biggest voltages along the US eastern seaboard and in the Midwest were as much as 10,000 times normal. A map from NOAA and the US Geological Survey shows some of the ‘hot spots’ during the early hours of May 11th:

Back in March 1989, voltages only a little stronger than the ones shown above brought down the entire Hydro-Québec power system. The resulting Great Québec Blackout plunged millions of Canadians into darkness.

This time, however, power grids stayed up. “We haven’t heard of any serious problems so far,” reports Christopher Balch of NOAA’s Space Weather Prediction Center.

Balch leads an effort at NOAA to model geoelectric fields during solar storms. The map, above, is a snapshot from a real-time display that takes into account the 3D conductivity of the Earth and ongoing geomagnetic activity. A computer at the Space Weather Prediction Center crunches the data to produce minute-by-minute estimates of electricity in the ground.

When researchers talk about geoelectric fields they use units of volts per km (V/km). Earth’s crust naturally contains quiet-time fields measuring as little as 0.01 V/km. During geomagnetic storms, these values skyrocket.

“On May 10-11, geoelectric amplitudes exceeded 10 V/km in Virginia and 9 V/km in the upper Midwest,” says Jeffrey Love, a key member of the collaboration at the USGS. “These are very high. For comparison, we estimate that geoelectric amplitudes reached almost 22 V/km in Virginia during the March 1989 storm.”

This means the May 2024 storm was, electrically speaking, about half as intense as the storm that blacked out Québec 35 years ago. That’s too close for comfort. “Although power companies have taken measures to improve the resilience of their systems, no one would welcome another storm as intense as that of March 1989,” says Love.

Realtime electric field maps are published 24/7 on the NOAA website. During the next geomagnetic storm, click here to see what’s happening underfoot!

South Pacific Auroras Confirm May 10th Was a Great Storm

May 16, 2024: On the south Pacific island of New Caledonia, no one expects to see auroras. Ever. Situated about halfway between Tonga and Australia, the cigar-shaped island is too close to the equator for Northern or Southern Lights. Yet on May 10, 2024, this happened:

“I have rarely been so happy when taking a photo!” says Frédéric Desmoulins, who photographed the display from Boulouparis in the island’s south province. “I could see the red color of the auroras with my naked eye. According to the New Caledonian Astronomy Society, these photos are the first for this territory.”

“The auroral visibility from New Caledonia is really unique and extremely valuable,” says Hisashi Hayakawa, a space weather researcher at Japan’s Nagoya University. “As far as we know, the last time sky watchers saw auroras in the area was during the Carrington Event of Sept. 1859, when auroras were sighted from a ship in the Coral Sea.”

Hayakawa specializes in historical studies of great auroral storms. He tries to go back in time as far as possible. The problem is, magnetometers and modern sensors didn’t exist hundreds or thousands of years ago. Instead, he looks for records of aurora sightings in old newspapers, diaries, ships logs, even cuneiform tablets. Great Storms are identified by their low latitude–anything with naked-eye auroras below 30° MLAT (magnetic latitude).

“May 10th was definitely a Great Storm,” declares Hayakawa. “Naked-eye auroras sightings in New Caledonia (MLAT = -26.4°) and Puerto Rico (MLAT = 27.2°) confirm this in both hemispheres.”

In fact, it is among the top 20 Great Storms of the past 500 years. The above timeline from a research paper by Hayakawa has been modified to display the May 10th event. It is the green dot on the far-right end of the timeline.

This isn’t just an arcane historical curiosity. “We need to know about Great Storms of the past to understand how big storms might become today,” explains Hayakawa. “Our modern technological society depends upon it.”

Readers, if you witnessed auroras at low latitudes on May 10th, please submit your photos to our gallery and fill out this questionnaire from Hayakawa. Your observations may be included in a future research paper about this extreme storm.

Global Auroras on Mars

Feb 28, 2024: Earth isn’t the only planet with auroras. Mars has them, too–on a global scale.

“Mars is experiencing its greatest level of auroral activity in the past 10 years,” says Nick Schneider of the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP). “In February alone, there were three episodes of global auroras–an ‘aurora hat trick’ we’ve never seen before.”

Orbiting high above Mars, NASA’s MAVEN spacecraft recorded the auroras on 3-4 Feb, 7-10 Feb and 15-16 Feb. This animation shows the last two of these episodes in a looping time series:

Spaceweather.com actually predicted some of these events, prompted by SOHO coronagraph observations of CMEs heading toward Mars. “Your predictions came true!” says Schneider.

Schneider leads the team for MAVEN’s Imaging Ultraviolet Spectrograph (IUVS), the instrument that detected the auroras. All the purple pixels in the animation are a false color representation of the aurora’s ultraviolet glow. Martian auroras probably have a visible light component, too, but MAVEN’s cameras are not able to see them.

Here on Earth we would love it if auroras were global. Seeing Northern Lights with equal ease from the equator and the poles would check off a lot of bucket lists. Be careful what you wish for, though. Martian auroras can be global because the Red Planet has almost no protection from solar storms. It lacks an Earth-like magnetic field, so particles from the sun penetrate its atmosphere with ease–everywhere.

The dramatic auroras of February 2024 were caused by “SEPs”–solar energetic particles. SEPs are accelerated by shock waves within approaching CMEs. When they strike Mars’s atmosphere, they cause it to glow.

“Mars is currently getting hit by roughly 1 to 2 CMEs every month, bringing a hefty supply of SEPs,” says Rebecca Jolitz, a member of the MAVEN Solar Energetic Particle (SEP) instrument team at UC Berkeley’s Space Sciences Lab. “However, a CME doesn’t actually have to hit to be effective. SEPs coming in sideways from ‘remote CMEs’ can light up the skies as well.”

Schneider and Jolitz are looking forward to the months ahead. “Solar Cycle 25 is far from over, and we expect many more CME strikes,” Schneider says. “This will give us a chance to study how solar storms affect the atmosphere of Mars–a key goal of the MAVEN mission. It’s the kind of fun we’ve been waiting for!”

Extra: Schneider notes that SEPs aren’t the only way to make auroras on Mars. Protons in the solar wind and magnetic reconnection can do the trick, too, producing their own forms and colors. Stay tuned for more stories about the rich variety of Martian auroras as Solar Cycle 25 unfolds.