April 2, 2022: On March 30th, the sun did two seemingly contradictory things at once. It produced a loud radio burst and, at the same time, caused a deep radio blackout. Both were side-effects of an X1.3-class solar flare. First, let’s listen to the radio burst:

The gentle roar of static you just heard emerged from the loudspeaker of a shortwave radio receiver in New Mexico. Amateur astronomer Thomas Ashcraft recorded it. “The sun was well positioned in my radio antennas for the X1.3 solar flare,” says Ashcraft. “The left channel of the audio file is 22.2 MHz, the right channel is 21.1 MHz.”
This is a Type II solar radio burst. Shock waves from the flare rippled through the sun’s atmosphere, creating plasma oscillations that emit shortwave static. Briefly, the sun turned itself into a natural radio transmitter.
While the sun was busy creating radio waves, it was equally busy wiping them out. Radiation from the flare ionized the top of Earth’s atmosphere, preventing terrestrial radio stations from bouncing their signals over the horizon as usual. This map shows where manmade signals suddenly faded:

Ashcraft’s observatory in New Mexico is located near the middle of the blackout zone. Take another look at his dynamic spectrum. Horizontal lines are terrestrial radio stations. They vanished for about 10 minutes around the time of the flare. The effect is strongest at frequencies below ~20 MHz.
In Gainesville, Florida, radio astronomer Francisco Reyes recorded the blackout as well. “I used an array of 4 dipoles with an FSX-7 radio spectrograph (Radio JOVE),” he says.
Would you like to record an event like this? NASA’s Radio JOVE program makes it easy. Off-the-shelf radio telescope kits allow even novices to monitor radio outbursts from the sun, which are becoming more frequent as Solar Cycle 25 intensifies. Solar flare alerts: SMS Text