Interplanetary Shock Wave Sparks Electric Blue Auroras

April 20, 2018: An interplanetary shock wave hit Earth’s magnetic field on April 19th around 23:50 UT. When the disturbance arrived, the density of solar wind flowing around our planet abruptly quadrupled and a crack opened in Earth’s magnetic field. The resulting G2-class geomagnetic storm sparked unusual “electric blue” auroras.

“I’ve been flying airplanes for 20 years and photographing aurora for 10 years, but I’ve never seen anything like this before,” reports pilot Matt Melnyk who photographed the display from 39,000 feet:

“Electric blue auroras!” he says. “This was while on a red eye flight from Edmonton to Toronto around 4 am over northern Manitoba. Unbelievable sky. I was able to grab some hasty shots with a cell phone.”

Auroras are usually green–a sign of oxygen. Rare blue auroras are caused by nitrogen molecules. Energetic particles striking N2+ at the upper limits of Earth’s atmosphere can produce an azure glow during intense geomagnetic storms.

During the storm, Northern Lights spilled across the Canadian border into the United States as far south as Indiana. Hongming Zheng, a student at Purdue University, saw the blue glow just five miles from his dorm:

“I was preparing for bed at 1:32 am on April 20th when I read that there was an Interplanetary Shockwave,” says Zheng. “I immediately started driving north to see the show. A weak green wisp showed up at 2am and faded, but shortly after 5am a sudden outburst occurred. Purple pillars were easily visible to the naked eye. It’s funny how one minute you are in a humid dorm struggling to get the laundry door closed, and the next minute you are chasing one of the most spectacular phenomenon known to man.”

What is an interplanetary shock wave? It is a supersonic disturbance in the gaseous material of the solar wind. These waves are usually delivered by coronal mass ejections (CMEs). Indeed, this one might have been a minor CME that left the sun unrecognized earlier this week.

Alternately, it might have been an unusually sharp co-rotating interaction region (CIR). CIRs are transition zones between slow- and fast-moving streams of solar wind. They contain plasma density gradients and magnetic fields that often do a good job sparking auroras.

Rare Videos of STEVE

April 11, 2018: Yesterday, a G1-class geomagnetic storm was brewing over Canada as a stream of solar wind buffeted Earth’s magnetic field. Matthew Wheeler of Robson Valley, British Columbia, stepped outside to see what was up–and STEVE appeared. “My dog barked at it for the entire hour it was visible,” says Wheeler. “It was flowing like a river at astonishing speed.” Click to play his must-see video:

STEVE may look like an aurora, but it is not. For one thing, it is soft purple, not green like typical auroras. And it has its own special form–tightly collimated into a narrow ribbon that can bisect the entire sky.

Researchers are only beginning to understand the phenomenon–aided by a chance encounter between STEVE and a European satellite a few years ago. In situ measurements revealed that STEVE is a hot (3000 degrees C) ribbon of ionized gas slicing through Earth’s upper atmosphere some 300 km above the ground. It appears unpredictably during some, but not all, geomagnetic storms.

Another video–“my best yet,” says Wheeler–shows the beautiful interaction between the soft-purple ribbon and nearby green “picket fence” auroras:

“The purple ribbon was moving much faster than the green pickets,” says Wheeler. “And while their forms varied from smooth to ragged and back again, their path across the sky was almost constant for the whole hour–as it has since I first noticed STEVE over this valley in the 1980s.”

Does STEVE really make dogs bark? “Mine does,” says Wheeler. “In addition to barking at STEVE, my giant Akbash astronomy dog, Patch, has barked at the space station since he was a pup, and proudly seen it off the farm every time. He is also a valuable spotter of meteor showers. When I hear him barking upwards, it is time to go outside.”

Realtime Aurora Photo Gallery

Strange Aurora-like Arc Sighted over Alaska: It’s “Steve”!

March 25, 2018: Last night, something happened at the edge of space over Alaska. More than 200 km above Anchorage, a hot ribbon of ionized gas sliced through Earth’s magnetosphere, creating a luminous arc that rivaled the Moon in brightness. Sanjana Greenhill witnessed the apparition:

“We noticed this perfect arc developing across the sky,” says Greenhill. “It didn’t seem like the aurora since it wasn’t moving much. The arc got brighter and then faded and then got brighter again. And then it dawned on me, this is STEVE!”

STEVE is an aurora-like phenomenon that researchers are only beginning to understand. For many years, northern sky watchers reported the form occasionally dancing alongside auroras. It was widely called a “proton arc” until researchers pointed out that protons had nothing to do with it. So members of the Alberta Aurora Chasers group gave it a new name: “Steve” (since upgraded to STEVE, an acronym for ‘Strong Thermal Emission Velocity Enhancement’).

The first clues to the nature of STEVE came in 2016 when one of the European Space Agency’s Swarm satellites encountered the phenomenon. “As the satellite flew straight though ‘Steve,’ the temperature jumped by 3000°C and the data revealed a 25 km-wide ribbon of gas flowing westwards at about 6 km/s (13,000 mph),” reports Eric Donovan from the University of Calgary.

Donovan and a team of colleagues led by Elizabeth MacDonald of NASA’s Goddard Space Flight Center have just published a paper on STEVE. In it, they confirm that STEVE is distinct from ordinary auroras, usually forming to the south of active Northern Lights. The mauve and purple colored arcs, they say, are related to supersonic rivers of gas called “subauroral ion drifts” (SAIDs), which flow through Earth’s magnetic field. Earth-orbiting satelites have tracked thousands of SAIDs: they tend to appear near latitude +60 degrees, and occur more frequently during spring and fall than summer and winter.

This last point means that now is the season for STEVE. The onset of northern spring seems to lure the arc out of winter hiding.

“I saw STEVE for the first time on March 18th,” reports Giuseppe Petricca , who took this sequence of pictures from the Isle of Lewis in Scotland:

“It was an ever-changing tornado, with violet tones, always in movement, always with different shapes,” he says. “Another wonder of Nature!”

The mystery of STEVE is far from solved. Researchers still don’t understand why STEVE is purple–or for that matter why the underlying rivers of gas should glow at all. “Further spectral analysis and modeling are needed,” say MacDonald et al.

In other words, keep an eye out for STEVE.

Realtime “Steve” Photo Gallery


“Equinox Cracks” Forming in Earth’s Magnetic Field

March 11. 2018: The vernal equinox is less than 10 days away. That means one thing: Cracks are opening in Earth’s magnetic field. Researchers have long known that during weeks around equinoxes fissures form in Earth’s magnetosphere. Solar wind can pour through the gaps to fuel bright displays of Arctic lights. One such episode occurred on March 9th. “The sky exploded with auroras,” reports Kristin Berg, who sends this picture from Tromsø, Norway:

During the display, a stream of solar wind was barely grazing Earth’s magnetic field. At this time of year, that’s all it takes. Even a gentle gust of solar wind can breach our planet’s magnetic defenses.

This is called the the “Russell-McPherron effect,” named after the researchers who first explained it. The cracks are opened by the solar wind itself.  South-pointing magnetic fields inside the solar wind oppose Earth’s north-pointing magnetic field. The two, N vs. S, partially cancel one another, weakening our planet’s magnetic defenses. This cancellation can happen at any time of year, but it happens with greatest effect around the equinoxes. Indeed, a 75-year study shows that March is the most geomagnetically active month of the year, followed closely by September-October–a direct result of “equinox cracks.”

NASA and European spacecraft have been detecting these cracks for years. Small ones are about the size of California, and many are wider than the entire planet. While the cracks are open, magnetic fields on Earth are connected to those on the sun. Theoretically, it would be possible to pick a magnetic field line on terra firma and follow it all the way back to the solar surface. There’s no danger to people on Earth, however, because our atmosphere protects us, intercepting the rain of particles. The afterglow of this shielding action is called the “aurora borealis.”

Stay tuned for more Arctic lights as spring approaches.

Realtime Aurora Photo Gallery


Nov. 23, 2017: On Nov. 22nd, the face of the sun was unblemished by sunspots, and NOAA classified solar activity as “very low.”  Nevertheless, the skies above Tromsø, Norway, exploded with a remarkable outburst of pink auroras. “Suddenly, the whole valley turned white (with a hint of pink),” says Frank Meissner, who witnessed and photographed the display. “It was over after about 20 seconds.”

How bright was it? “The brightness of the auroras may be compared to the car lights in the background of my photo,” points out Meissner.

In nearby Kvaløya, aurora tour guide Marianne Bergli witnessed a surge of pink that was, if anything, even more dramatic:

“Ironically, our guests stopped taking pictures,” says Bergli. “They were awestruck and frozen to the spot by the incredible pink and green lights overhead.”

This outburst was powered by a stream of solar wind flowing from a hole in the sun’s atmosphere. Such holes are common during Solar Minimum, and they require no sunspots to form. That’s why auroras continue throughout the 11-year solar cycle.

The pink color of the outburst tells us something interesting about the solar wind on Nov. 22nd: it seems to have been unusually penetrating. Most auroras are green–a verdant glow caused by energetic particles from space hitting oxygen atoms 100 km to 300 km above Earth’s surface. Pink appears when the energetic particles descend lower than usual, striking nitrogen molecules at the 100 km level and below.

In recent winters, big displays of pink and white auroras have coincided with spotless suns often enough to make observers wonder if there is a connection.  If so, more outbursts are in the offing as the sun continues its plunge toward a deep Solar Minimum. Stay tuned for pink!

Realtime Aurora Photo Gallery

Solar Wind Summons “Steve”

May 21, 2017: During Saturday morning’s solar wind storm, photographer Harlan Thomas stationed himself among the Hoodoos in the badlands of Alberta, Canada. He hoped to catch a display of auroras. This is what he saw:

“Steve appeared!” says Thomas. “I photographed him behind the silhouettes of the Hoodoos alongside Jupiter and a green picket fence aurora.”

“Steve” is the purple arc bisecting the sky. For many years, northern sky watchers have reported this luminous form occasionally dancing among regular auroras. It was widely called a “proton arc” until researchers pointed out that protons probably had nothing to do with it. So members of the Alberta Aurora Chasers group gave it a new name: “Steve.”

No one fully understands the underlying physics of the purple ribbon. However, one of the European Space Agency’s Swarm satellites recently flew overhead while Steve was active, providing some clues.
This ESA video shows Swarm satellites orbiting above ground-based aurora imagers: more

“As the satellite flew straight though ‘Steve,’ data from the electric field instrument showed very clear changes,” reports Eric Donovan from the University of Calgary. “The temperature 300 km above Earth’s surface jumped by 3000°C and the data revealed a 25 km-wide ribbon of gas flowing westwards at about 6 km/s compared to a speed of about 10 m/s either side of the ribbon.”

Steve’s visit to Alberta on May 20, 2017, coincided with another exotic auroral form: the green “picket fence.” These vertical rays are thought to trace lines of magnetic force connecting Earth to space. Luminous green columns show where beams of energetic particles are being guided toward Earth’s upper atmosphere by magnetic fields.

Both Steve and the picket fence are filamentary structures associated with beams or ribbons of gas. Coincidence? Hardly. Pictures of the two phenomena show that they often appear together. Consider it another clue.

Realtime “Steve” Photo Gallery

“Steve” Sighted over Calgary

May 18, 2017: For years, northern sky watchers have occasionally spotted a mysterious ribbon of purple light dancing among the aurora borealis. It was widely called a “proton arc” until researchers pointed out that protons probably had nothing to do with it. So members of the Alberta Aurora Chasers group gave it a new name: “Steve.” Recent widespread reporting about Steve has led to even more sightings–and indeed he appeared just this week over Calgary:

“Steve hung out with me for about 15 minutes on May 17th,” reports photographer Harlan Thomas, who witnessed a spectacular display of auroras over Twisted Ponds. The lights appeared as Earth moved through a stream of fast-moving solar wind that briefly interacted with our planet two days ago.

Steve is still a mystery. No one fully understands the underlying physics of the ribbon.  However, one of the European Space Agency’s SWARM satellites recently flew overhead while Steve was active, providing some clues.

“As the satellite flew straight though Steve, data from the electric field instrument showed very clear changes” reports Eric Donovan from the University of Calgary. “The temperature 300 km above Earth’s surface jumped by 3000°C and the data revealed a 25 km-wide ribbon of gas flowing westwards at about 6 km/s compared to a speed of about 10 m/s either side of the ribbon.”

These clues, confirmed and supplemented by similar flybys in the future, may yet crack the mystery of this phenomenon. For now, Steve is unpredictable and may appear in the aurora gallery at any time. Stay tuned!

Realtime Aurora Photo Gallery

Arctic Space Weather Balloon Launch

March 3, 2017: is going to Sweden–and we’re taking a team of student researchers from Earth to Sky Calculus with us. For a week beginning on March 9th we plan to launch a series of space weather balloons equipped with cosmic ray sensors and cameras into the stratosphere above the Arctic Circle. At the same time, Earth to Sky launch teams in Chile and California will be sending up identical payloads, forming an intercontinental balloon network:

We’re doing this for three reasons:

1. To understand Earth’s changing radiation environment: Regular monitoring of the stratosphere over California shows that cosmic rays have intensified more than 10% since 2015.  Because of a recent decline in the solar cycle, more and more cosmic rays are reaching the inner solar system and penetrating the atmosphere of our planet. Earth’s magnetic field should protect us against these rays, but geomagnetism is weakening. Globally, Earth’s magnetic field has declined in strength by 10% since the 19th century with changes accelerating in recent years, according to measurements by Europe’s SWARM satellites. To understand Earth’s global response to these changes, we must launch balloons and sample radiation from widely-spaced locations.  The upcoming network launch will span three continents, more than 14,000 km of linear distance, and 90+ degrees of latitude.

Above: Satellite data show that Earth’s magnetic field is changing: full story.

2. To photograph the Northern Lights: We will be launching balloons from Abisko, Sweden, 250 km inside the Arctic Circle. Abisko is famous for spectacular auroras. One of our payloads will carry a low-light camera capable of photographing these lights from the stratosphere. Even at 120,000 feet, the balloon will be well below the auroras, but we will be a lot closer than any camera on the ground

3. To sample polar stratospheric clouds: During winter months, the stratosphere above the Arctic Circle sometimes fills with icy clouds so colorful, they are likened to the aurora borealis. Polar stratospheric clouds (PSCs) are a sign of extremely cold temperatures in the stratosphere and some types of PSCs are responsible for ozone destruction. Our space weather balloons can fly right through these clouds, sampling their temperature, pressure, and ambient levels of radiation.  We can also photograph them from the inside–a possible first!

Above: Polar stratospheric clouds over Kiruna, Sweden, on Feb. 14. Credit: Mia Stålnacke

Stay tuned for daily updates beginning March 9th.

“Daytime Auroras” … a.k.a. Polar Stratospheric Clouds

Feb. 15, 2017: On Feb. 13th, something amazing happened in the stratosphere over the Arctic Circle. Normally, the air 60,000+ feet above Earth’s surface is dry and utterly transparent.  On the eve of Valentine’s Day, however, the Arctic stratosphere filled with a gossamer haze of crystalline ice, and when sunlight hit the freezing crystals, the sky filled with clouds of intense iridescent color.

“Our guests referred to the clouds as ‘daytime auroras,’” reports Chad Blakley, who operates the Lights over Lapland tour guide service in Abisko, Sweden. One of them, Champ Cameron (@champcameron on Instagram), snapped this picture of the display:

“Champ was participating in our Sami And Reindeer Experience outside of Abisko yesterday afternoon,” explains Blakley. “The roads were very icy due to a freak rain storm and warm weather (+9 degrees C) so we nearly canceled the trip. But we heard that there were incredible clouds in the sky so we chose to brave the weather and push on.”

Good thing. They witnessed an exceptional display of polar stratospheric clouds (PSCs). PSCs are a sign of very cold temperatures in the stratosphere. For ice crystals to form in the normally arid stratosphere, temperatures must drop to around -85º C. So while it was strangely warm on the ground below, it was incredibly cold up above.

Longtime observers say PSCs are becoming more common and more intense. “I’ve been living here all my life (33 years),” says Mia Stålnacke of Kiruna, Sweden, who also photographed the colorful outbreak. “I definitely feel that these clouds are appearing more often then they used to. I remember seeing them a few times/year since I was a kid, but these last couple of years we’ve had them much more often–sometimes for almost a week straight. Others seem to feel the same way; I see local groups on Facebook flooded with photos of PSCs and comments on how often they’re appearing now.”

“Our bus driver, a longtime resident of the area, described it as the best PSC display he had ever seen,” relays Blakley. “We were overwhelmed by the natural beauty.” The clouds were so intense, they remained visible even after the sun set:

“We saw these clouds all day long, and they continued into the night,” says photographer Lars Lehnert of Abisko, Sweden. ” I’ve never seen anything quite like it.”

Once thought to be mere curiosities, some PSCs are now known to be associated with the destruction of ozone. Indeed, an ozone hole formed over the UK in Feb. 2016 following an outbreak of ozone-destroying Type 1 PSCs.

To investigate these clouds further, and the students of Earth to Sky Calculus will travel to Abisko Sweden for a week in March 2017.  We plan to launch a series of space weather balloons into the Arctic stratosphere, measuring temperature, air pressure, and ambient radiation.  If PSCs are present, our sensors will pass directly through them, and our cameras can photograph the colorful clouds at point blank range. Stay tuned!

Realtime PSC Photo Gallery

Aurora “Blaster Fire” Recorded in Sweden

Dec. 29, 2016: For centuries, Arctic sky watchers have occasionally reported strange sounds filling the air as Northern Lights danced overhead. Hisses, crackles, and even loud “claps” have been heard and recorded. It may be time to add a new sound to the menagerie: blaster fire.

Photographer Oliver Wright sends this report from inside the Arctic Circle: “On Christmas Night 2016, I was standing beneath an intense display of auroras in Abisko, Sweden, when I heard something that sounded like Star Wars blasters.” As the lights danced overhead, a series of rat-a-tat ‘swooshes’ emanated from a nearby set of power lines.  “Other bystanders heard it, too,” he says. “I rushed closer to the power lines and was able to record a sample using my iPhone.”

To listen, click on the photo–and don’t forget to turn up the volume:

Wright says that the sounds waxed and waned in sync with the auroras overhead; the brighter the lights, the louder the sounds. Distance mattered, too:  “The sounds grew louder as I approached the power lines, and fainter as I moved away.”

Wright is a veteran tour guide working for Lights over Lapland, and he has heard these sounds before–”three times in total. Each time I was standing near power lines.” He recalls a particularly intense outburst of “blaster fire” during the powerful St. Patrick’s Day Storm of March 2015. In each case, guests and/or friends heard the sounds as well.

What’s going on?

“Aurora sounds” have long been a controversial topic.  Some researchers insist that they exist only in the imagination of the listener, but there is growing evidence that they are real.

Twas the night before Christmas. Read Oliver Wright’s aurora blog.

Perhaps the most commonly reported aurora sounds are “hissing” and “crackling,” a bit like static on a radio.  These are thought to come from electric fields causing spark discharges at the pointy ends of objects like pine needles or even strands of dry hair.  Aurora “claps” have been recorded as well.  A researcher in Finland spent 15 years studying this phenomenon and published his results in 2012.  He found that a temperature inversion layer in the atmosphere about 70 meters above the ground could cause a separation of + and – charges in the air. During strong geomagnetic storms, the charge separation breaks down, causing air to move and a “clap” to be heard.

The sounds Wright recorded may be a result of “electrophonic transduction”–that is, the conversion of electromagnetic energy into mechanical motion. At the time of the Christmas aurora outburst, magnetic fields around Abisko were seething with activity.  Physics 101: Unsettled magnetic fields can cause currents to flow in power lines.  Strong low-frequency currents can literally shake objects, launching acoustic vibrations into the air.  Wright may have recorded the unique sound of those power lines swaying in response to the magnetic storm.

“This discussion feels poignant with the passing of Carrie Fisher as she was my childhood love and the sound is very reminiscent of Star Wars,” notes Wright.

Indeed, “Carrie’s Crackles” might be a good name for these heavenly sounds. Around Abisko, people will be listening for more as the next magnetic storm approaches.  Stay tuned!