Geomagnetic Thunder? Auroras Caught Making Noise

Oct. 10, 2018: On Oct. 7th, a solar wind stream hit Earth’s magnetic field, sparking a G1-class geomagnetic storm. In southern Finland, the night sky turned green as energetic particles rained down on the upper atmosphere. But there was more to the show than beautiful lights.

“The storm also produced a number of distinctive sounds including crackles and claps,” reports Prof. Emeritus Unto K. Laine of Finland’s Aalto University. “Here is a recording of one of the strongest sounds of the night–a sharp clap.” Click to listen:

“I recorded this in the vicinity of Fiskars village after midnight local time,” he says.

Auroral sounds are controversial. Over the centuries, there have been many reports of strange sounds under the Northern Lights. However, researchers have struggled to explain the phenomenon and sometimes suggested that they might be imaginary. Laine is a believer: “We have been recording sounds like these for almost 20 years as part of the Auroral Acoustics Project.” More samples may be found here.

Laine has developed arrays of microphones that can pinpoint the sounds through triangulation. He finds that they occur about 70 meters above the ground. Temperature inversion layers at that altitude can cause a separation of + and – charges in the air. During some geomagnetic storms, the charge separation breaks down, causing air to move and a faint “clap” to be heard.

Think of it as geomagnetic thunder.

A spectral analysis of the “thunderclap” (above) shows dominant frequencies between 1 kHz and 2 kHz, squarely in the range of human hearing. You have to be quiet to hear them, though.

“People who talk and walk around, concentrating on picture taking, might never hear a single sound related to aurora,” says Laine. “You have to stop all other activities and focus on listening. We Finns are probably good at this because we have received more than 300 reports of sound observations during the Auroral Acoustics Project.”

Over the years, Laine has learned that a geomagnetic storm, by itself, is not enough to produce these thunderclaps. “A strong inversion layer is also required,” he says. “The inversion layer acts like an electrostatic loudspeaker. Without it there are no sounds.” This explains why many geomagnetic storms are silent. The local weather has to be just right — as it was on Oct. 7th.

Realtime Aurora Photo Gallery

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s